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Abstract 

A bottom-up approach to parallel anisotropic mesh generation is presented by building a mesh generator from the principles of 

point-insertion, triangulation, and Delaunay refinement. Applications focusing on high-lift design or dynamic stall, or numerical 

methods and modeling test cases use two-dimensional domains. Our push-button parallel mesh generation approach, meaning the 

user only needs to start the program by specifying the initial geometry, anisotropic gradation, and ray angle constraint, can generate 

high-fidelity unstructured meshes with anisotropic boundary layers for use in the computational fluid dynamics field. 
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1. Introduction 

Mesh generation is a step in the pipeline for designing aerospace structures, see Fig. 1. After an analysis of the 

partial differential equations (PDE) solution on the mesh, the mesh is refined to yield a more favorable error 

estimation. The refinement process aims to incrementally add more resolution to poor-quality regions of the mesh, 

with respect to the PDE. For executing a pipeline of tasks, Amdahl’s law is considered, which states that the speedup 

of a program is limited by the sequential fraction of the program. Consider a program where 25% of the program 

needs to be performed sequentially. If the remaining 75% of the program is parallelized yielding infinite speedup for 

the 75% portion, then the largest overall speedup we would be able to achieve is four.  

 

 
 

Fig. 1. Development pipeline 
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Parallel mesh generators by Lammera and Burghardt [1], Kadow [6], and Globisch [14] exist which handle the 

isotropic cases do not perform well for parallel anisotropic mesh generation. Isotropic mesh generators which focus 

on solution-based adaptation create many unnecessary elements where there is a high degree of gradation in the flow 

velocities in one direction. These anisotropic gradations in the flow velocities require anisotropic elements, typically 

with a 10,000:1 aspect ratio, so representing these regions with isotropic elements incurs a 10,000 fold increase in the 

number of elements. Chrisochoides and Nave [4] and Ito et al. [13] have applied efforts to generating meshes in 

parallel for the uniform isotropic and graded isotropic case. Zagaris et al. [10, 11], in parallel, and Loseille et al. [8] 

and Zhang et al. [12] sequentially, have begun developing anisotropic mesh generation paradigms to facilitate 

computational fluid dynamics (CFD) simulations.  

 

In this paper, we present an algorithm which: generates a high-fidelity, anisotropic boundary layer mesh in parallel 

based on a user-defined growth function; generates a globally Delaunay, graded, isotropic inviscid region mesh in 

parallel; and resolves potential interpolation errors in the boundary layer caused by the local density of the mesh. The 

examples presented are for the NACA 0012 Airfoil, which is used to illustrate the fundamentals of the algorithm. 

These fundamentals hold for multi-element and concave airfoils. The anisotropic Delaunay kernel is not needed to 

generate the pseudo-structured boundary layer because of the extrusion-based point insertion paradigm where 

alignment and orthogonality of the highly stretched elements is implicit. The extension of the projection-based 

partitioning algorithm to three-dimensional domains holds for the property that each element of the Delaunay 

triangulation/tetrahedralization in a d-dimensional space corresponds to a facet of the convex hull of the projection of 

the points onto a (d+1)-dimensional paraboloid. 

2. Algorithm 

Efficient meshes for aerospace applications are comprised of two different mesh types: a pseudo-structured 

anisotropic boundary layer and an unstructured isotropic inviscid region. The pseudo-structured anisotropic boundary 

layer is generated through an extrusion-based method, presented by Aubry et al. [9]. The unstructured isotropic 

inviscid region is generated using a graded decoupled approach presented by Linardakis and Chrisochoides [5] along 

with Delaunay refinement. 

2.1. Anisotropic Boundary Layer 

Physical phenomena such as boundary layers in fluid mechanics are anisotropic in nature. There is a high degree 

of gradation in the flow velocities normal to the surface, thus it is beneficial to discretize the mesh in a way that 

efficiently captures these anisotropic flow velocities in order to yield substantial CPU savings without compromising 

accuracy. This dictates that the mesh should be refined in the direction normal to the surface where these strong 

gradients exist. These characteristics allow for the extrusion-based point insertion along the normal at the surface 

where each vertex is treated as an endpoint for a ray while the normal is treated as the direction of the ray. 

2.1.1. Parallel Anisotropic Boundary Layer Point Insertion 

 

If the angle between two rays is too large, then the distance between vertices of neighboring rays will grow at 

excessively rapid rates, affecting the density of the mesh, causing interpolation errors when the PDE solution is 

computed. Refining rays are added where the angle between two rays is larger than the user-defined angle constraint. 

This process is done in parallel where each thread accesses a shared queue of vertices and computes the normal at the 

vertex. The angle between the current ray and the forward neighboring vertex’s ray is computed to determine if 

refining rays need to be added. Fig. 2a shows two large angles easily visible at the trailing edge after the ray-based 

point insertion, while Fig. 2b includes the augmented points. Rays are checked for intersections with other rays, then 

each thread accesses a shared queue of rays and calculates the new points along the ray direction with respect to the 

growth function. New vertices are inserted until the number of vertices for the current ray equals the number of layers 

desired, or until the intersection point.  
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Fig. 2. (a) Trailing edge points for original rays; (b) Trailing edge points with refining rays added 

2.1.2. Parallel Triangulation of Boundary Layer 

 

After the point insertion step, the vertices in the boundary layer are triangulated using the algorithm presented by 

Blelloch et al. [2], which utilizes the duality between the two-dimensional Delaunay triangulation and the three-

dimensional lower convex hull of a paraboloid, see Fig. 3a. This approach was chosen because the dividing path 

created between subdomains corresponds to edges of Delaunay triangles in the final triangulation. Unlike other 

algorithms [7] which use user-defined dividing paths to arbitrarily partition the domain by introducing undesired, new 

points which may not have been present in the final triangulation.  

 

(a) (b)  

Fig. 3. (a) Paraboloid (yellow), lower convex hull (green) with corresponding Delaunay triangulation (blue), points on Cartesian plane, and 

projected points on paraboloid; (b) Cartesian point set (green) and Delaunay path (brown) with corresponding flattened projection of the point set 

(blue) and lower convex hull (red).  

Using the median vertex, the vertices are projected onto a paraboloid centered at the median vertex and then 

flattened onto the vertical plane, see Fig. 3b. The lower convex hull of the vertices on the vertical plane is computed 

and used to create the dividing path. Two subdomains are created from the original subdomain by partitioning the 

vertices with respect to the median line. Vertices on the dividing path are added to both subdomains. A subdomain is 

sufficiently decomposed if: it contains no internal vertices, the number of vertices is less than a tolerance, or the 

decomposition’s recursive level reaches a threshold. Fig. 4 shows the boundary layer decomposed into 64 Delaunay 

subdomains, which can all be triangulated independently by Triangle [3]. 
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Fig. 4. Decomposed Delaunay subdomains 

2.2. Isotropic Inviscid Region 

For generating the isotropic inviscid region, we use a sizing function along with Triangle’s ability to use a user-

defined area constraint for Delaunay refinement to provide a smooth gradation of triangle size. To facilitate the parallel 

refinement, we generate graded Delaunay decoupling paths, presented by Linardakis and Chrisochoides [5], by 

computing the value k =1/2 √(𝐴 /√2 ), where A is the area of the desired element at the given vertex, for each of the 

four vertices on the corners of a subdomain. Using the k value for each of the four vertices, for each edge, E, comprised 

of vertex u and vertex v, a graded Delaunay decoupling path is created by discretizing the path from vertex u to vertex 

v. Assume ku ≤ kv for the k values at u and v respectively. We choose an integer in the range of |𝐸| ⁄ (2𝑘𝑢 ) and 

√3|𝐸| ⁄ (2𝑘𝑣 ) to be the number of segments that edge E will be split into. Fig. 5a shows the decoupled subdomains 

after Delaunay refinement. Fig. 5b shows the smooth gradation of elements from the outer layer of the boundary layer 

to the near-body inviscid region.  

 

  

Fig. 5. (a) Inviscid region; (b) Boundary layer to near-body inviscid region 

3. Evaluation 

We executed our application on two machines: a Concurrent-Read Exclusive-Write Parallel Random Access 

Machine (CREW PRAM) with eight Intel Xeon CPU E7-4830 at 2.13 GHz processors and 32 GB of memory, and a 

Cache-Coherent Non-Uniform Memory Access (CC-NUMA) machine with eight Intel Xeon CPU X5560 at 2.80 GHz 

processors and 16 GB of memory. We measured the speed up, the ratio of the execution time of the fastest sequential 

algorithm, Triangle, to the execution time of the parallel algorithm; and efficiency, the ratio of speedup to the number 

of threads used. The execution times do not include input and output times. Our application performed favorably with 

an efficiency of 90% for four threads, see Fig. 6b. The max speedup we achieved is six for eight threads on the PRAM 

architecture, see Fig. 6a.  
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Fig. 6. (a) Speedup compared to Triangle; (b) Efficiency compared to Triangle 

4. Conclusion 

We have developed a practical approach to generate high-quality, two-dimensional unstructured meshes comprised 

of an anisotropic, high-fidelity boundary layer and decoupled inviscid region in parallel for use in CFD simulations 

on shared-memory machines. We plan to extend our approach to handle multi-element airfoils and to generate high-

quality three-dimensional meshes in parallel.  
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